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 [https://smartsvm.readthedocs.io/en/latest/?badge=latest]SmartSVM is a Python package that implements the methods from Fast
Meta-Learning for Adaptive Hierarchical Classifier Design [https://arxiv.org/abs/1711.03512] by Gerrit J.J. van den Burg [https://gertjanvandenburg.com/research] and Alfred O. Hero [https://web.eecs.umich.edu/~hero/]. The package contains functions for
estimating the Bayes error rate (BER) using the Henze-Penrose divergence and a
hierarchical classifier called SmartSVM. See the Usage documentation below for
more details.




Installation

SmartSVM is available on PyPI and can be installed easily with:

pip install smartsvm








Usage

In the paper the main focus is on the accurate Bayes error estimates and the
hierarchical classifier SmartSVM. These will therefore be of most interest to
users of the SmartSVM package. Below we briefly explain how to use these
functions.


Citing

If you use this package in your research, please cite the paper using the
following BibTex entry:

@article{van2017fast,
  title={Fast Meta-Learning for Adaptive Hierarchical Classifier Design},
  author={Gerrit J.J. van den Burg and Alfred O. Hero},
  journal={arXiv preprint arXiv:1711.03512},
  archiveprefix={arXiv},
  year={2017},
  eprint={1711.03512},
  url={https://arxiv.org/abs/1711.03512},
  primaryclass={cs.LG}
}








Bayes error estimates

Error estimation is implemented three functions:


	hp_estimate for the Henze-Penrose estimator of the Bayes error rate.
This can be used as:

>>> import numpy as np
>>> from smartsvm import hp_estimate
>>> X1 = np.random.multivariate_normal([-1, 0], [[1, 0], [0, 1]], 100)
>>> X2 = np.random.multivariate_normal([1, 0], [[1, 0], [0, 1]], 100)
>>> hp_estimate(X1, X2) # with normalization
>>> hp_estimate(X1, X2, normalize=False) # without normalization







	compute_error_graph and compute_ovr_error respectively compute the
complete weighted graph of pairwise BER estimates or the One-vs-Rest BER for
each class. They have a similar interface:

>>> import numpy as np
>>> from smartsvm import compute_error_graph, compute_ovr_error
>>> from sklearn.datasets import load_digits
>>> digits = load_digits(5)
>>> n_samples = len(digits.images)
>>> X = digits.images.reshape((n_samples, -1))
>>> y = digits.target
>>> G = compute_error_graph(X, y, n_jobs=2, normalize=True)
>>> d = compute_ovr_error(X, y, normalize=True)












SmartSVM Classifier

SmartSVM is an adaptive hierarchical classifier which constructs a
classification hierarchy based on the Henze-Penrose estimates of the Bayes
error between each pair of classes. The classifier is build on top of
Scikit-Learn and can be used in the exact same way as other sklearn
classifiers:

>>> import numpy as np
>>> from smartsvm import SmartSVM
>>> from sklearn.datasets import load_digits
>>> digits = load_digits(10)
>>> n_samples = len(digits.images)
>>> X = digits.images.reshape((n_samples, -1))
>>> y = digits.target
>>> clf = SmartSVM()
>>> clf.fit(X, y)
>>> clf.predict(X)





By default, the SmartSVM classifier uses the Linear Support Vector Machine
(LinearSVC) as the underlying binary classifier for each binary subproblem
in the hierarchy.  This can easily be changed with the binary_clf
parameter to the class constructor, for instance:

>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = SmartSVM(binary_clf=DecisionTreeClassifier)
>>> clf.fit(X, y)
>>> clf._get_binary()
DecisionTreeClassifier(class_weight=None, criterion='gini',
        max_depth=None, max_features=None, max_leaf_nodes=None,
        min_impurity_decrease=0.0, min_impurity_split=None,
        min_samples_leaf=1, min_samples_split=2,
        min_weight_fraction_leaf=0.0, presort=False, random_state=None,
        splitter='best')





You may optionally add parameters for the classifier through the
clf_params parameter. This should be a dict with the parameters to the
binary classifier, as follows:

>>> clf = SmartSVM(binary_clf=DecisionTreeClassifier, clf_params={'criterion': 'entropy'})
>>> clf.fit(X, y)
>>> clf._get_binary()
DecisionTreeClassifier(class_weight=None, criterion='entropy',
        max_depth=None, max_features=None, max_leaf_nodes=None,
        min_impurity_decrease=0.0, min_impurity_split=None,
        min_samples_leaf=1, min_samples_split=2,
        min_weight_fraction_leaf=0.0, presort=False, random_state=None,
        splitter='best')





Finally, it’s possible to retrieve probability estimates for the classes if
the underlying classifier supports the predict_proba method:

>>> from sklearn.svm import SVC
>>> clf = SmartSVM(binary_clf=SVC, clf_params={"probability": True})
>>> clf.fit(X, y)
>>> prob = clf.predict_proba(X)
>>> import pandas as pd
>>> df = pd.DataFrame(prob)
>>> df
                 0             1             2      ...
0     9.999997e-01  1.716831e-18  2.677824e-13      ...
1     1.000000e-07  9.956408e-01  1.035589e-09      ...
2     2.595652e-05  1.452011e-02  9.722321e-01      ...





For more information about parameters to SmartSVM, see the API documentation
here [https://smartsvm.readthedocs.io/en/latest/#api-documentation].






Known Limitations

The Henze-Penrose estimator of the Bayes error rate is based on construction
of the Euclidean minimal spanning tree. The current algorithm for this in the
SmartSVM package uses an adaptation of Whitney’s algorithm [https://dl.acm.org/citation.cfm?id=361299]. This is not the fastest way to
construct a minimal spanning tree. The Fast Euclidean Minimal Spanning Tree
algorithm by March et al. [http://www.mlpack.org/papers/emst.pdf], would be
a faster option but this makes it more difficult to construct orthogonal MSTs.
Incorporating this algorithm into the SmartSVM package is considered a topic
for future work.




References

The main reference for this package is:


	G.J.J. van den Burg and A.O. Hero - Fast Meta-Learning for Adaptive
Hierarchical Classifier Design (2017) [https://arxiv.org/abs/1711.03512].




The theory of the Henze-Penrose estimator is developed in:


	V. Berisha, A. Wisler, A.O. Hero, A. Spanias - Empirically Estimable
Classification Bounds Based on a Nonparametric Divergence Measure (2016) [http://ieeexplore.ieee.org/abstract/document/7254229/].


	V. Berisha, A.O. Hero -  Empirical Non-Parametric Estimation of the Fisher
Information (2015) [http://ieeexplore.ieee.org/abstract/document/6975144/].







API documentation

The documentation below is automatically generated from the docstrings in the
code. It is therefore also available through the builtin Python help()
function.


smartsvm.base module

Base object for hierarchical classifiers

This module contains the definition of a general hierarchical classifier, which
forms the basis for the SmartSVM classifier. The
HierarchicalClassifier class is an abstract base class, which leaves
the fit and _split methods to be defined in the subclass.


	
class smartsvm.base.HierarchicalClassifier(binary_clf=<class 'sklearn.svm.classes.LinearSVC'>, clf_params=None, n_jobs=1)

	Bases: sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin

Base class for a hierarchical classifier

This class is a base class for a hierarchical classifier which contains a
hierarchy of binary classification problems. It forms the basis of the
SmartSVM class and can be used to implement other hierarchical
classifiers. Note that this class is also the node class for the binary
tree: it has children which are in turn also
HierarchicalClassifier instances.


	Parameters

	
	binary_clf (classifier) – The type of the binary classifier to be used for each binary
subproblem. This will typically be a scikit-learn classifier such as
LinearSVC, DecisionTreeClassifier, etc.


	clf_params (dict) – Parameters to pass on to the constructor of the binary_clf type
classifier. It must be a dict with a mapping from parameter to value.


	n_jobs (int) – Number of parallel jobs to use where applicable.









	
classifier_

	The binary classifier for this node in the tree, if it exists. This can
also be obtained with the _get_binary() method.


	Type

	classifier










	
negative_child_

	The “left” child of the binary tree below this node.


	Type

	HierarchicalClassifier










	
positive_child_

	The “right” child of the binary tree below this node.


	Type

	HierarchicalClassifier










	
negative_

	Set of labels of the binary subproblem that are on the “left” part of
the tree.


	Type

	set










	
positive_

	Set of labels on the binary subproblem that are on the “right” part of
the tree.


	Type

	set










	
predict(X)

	Perform classification on dataset X






	
elements

	Elements in the graph or list of nodes






	
fit(X, y)

	Fit model.






	
is_splitable

	Check if the elements of this node can be split further






	
is_splitted

	Check if this node is already split






	
predict(X)

	Predict the class labels using the hierarchical classifier






	
predict_proba(X)

	Predict the class probabilities using the hierarchical classifier.

This is only available if the underlying binary classifier has the
“predict_proba” method. Note that if the probability model is created
using cross validation, the results can be slightly different than
those obtained with the predict method.






	
print_tree(prefix='', is_tail=None)

	Print the tree












smartsvm.cross_connections module

Code for computing the number of cross connections in an MST.

The functions in this module are used to compute the number of
cross-connections between data points of different classes in the Euclidean
Minimal Spanning Tree. It is the interface between the Cython code talking to
the C implementations, and the higher level functions that compute the
Henze-Penrose divergence.


	
smartsvm.cross_connections.binary_cross_connections(X, y, nTrees=3)

	Compute the number of cross connections for two classes

This function computes the average number of non-trivial cross-connections
in the orthogonal MSTs between points from different classes. For each MST
the number of times a point from one class is connected to a point from a
different class is recorded. This is reduced by 1 to adjust for the trivial
connection that will always exist, even in the case of large separation.
The result is averaged for each of the orthogonal MSTs.

A warning can occur when the requested number of orthogonal MSTs can’t be
computed on the data. This happens when there are either too few datapoints
to construct this many MSTs, or in the extreme case where each edge to a
data point is used in previous MSTs.


	Parameters

	
	X (numpy.ndarray) – Data matrix


	y (np.ndarray) – Class labels, assumed to be only +1 and -1


	nTrees (int) – The number of orthogonal MSTs to compute






	Returns

	C – The (average) number of non-trivial connections between instances of
different classes in the MSTs



	Return type

	float










	
smartsvm.cross_connections.ovr_cross_connections(X, y, nClass, nTrees=3)

	Compute the One-vs-Rest cross-connection counts

This function computes the cross-connection counts in the One-vs-Rest
setting by constructing orthogonal MSTs on the entire dataset, and
collecting cross-connection counts for each class.


	Parameters

	
	X (numpy.ndarray) – Numpy array of the data matrix


	y (numpy.ndarray) – Numpy array of the class labels, assumed to be in 0..nClass-1


	nClass (int) – The number of classes in y for the full problem. This needs to be
supplied in case y is a subset of the full dataset where not all
classes are present. This ensures that the outcome matrix has the
appropriate size.


	nTrees (int) – The number of orthogonal MSTs to compute






	Returns

	Cs – Vector of class cross-connection counts, ordered by class label (nClass
x nClass)



	Return type

	numpy.ndarray












smartsvm.cut module

Functions for graph cutting

This module contains functions for cutting the weighted error graph. The
default algorithm for cutting the graph is the Stoer-Wagner algorithm, but this
module also contains code for experimenting with the Spectral Clustering
algorithm to create graph cuts.


	
smartsvm.cut.graph_cut(G, algorithm='stoer_wagner')

	Cut a connected graph into two disjoint graphs

This is a wrapper function to make it easy to use different graph cut
algorithms.


	Parameters

	
	G (networkx.Graph) – The graph that needs to be cut


	algorithm (str) – The graph cut algorithm to use. Available values are:
'stoer_wagner', 'spectral_clustering', and
'normalized_cut'.






	Returns

	
	G1 (networkx.Graph) – One of the subgraphs


	G2 (networkx.Graph) – The other subgraph








	Raises

	ValueError – When an unknown graph cut algorithm is supplied.










	
smartsvm.cut.graph_cut_sc(G, assign_labels=None)

	Apply the Spectral Clustering algorithm to cut the graph

Create two subgraphs using a Spectral Clustering of the adjacency matrix of
the graph.

Important: Since the matrix of weights is a dissimilarity matrix (high
numbers correspond to difficult to separate classes, we turn it into a
similarity matrix for the Spectral Clustering algorithm by using the
normalized exponent of the weight matrix. This is also done in the examples
of Scikit-Learn for Spectral Clustering. Weights that were zero in the
weight matrix are set to zero in the dissimilarity matrix as well.


	Parameters

	
	G (networkx.Graph) – The graph that needs to be cut


	assign_labels (str) – Parameter for the Scikit-Learn spectral_clustering function.
Available values are: kmeans and discretize.






	Returns

	
	G1 (networkx.Graph) – One of the subgraphs


	G2 (networkx.Graph) – The other subgraph















	
smartsvm.cut.graph_cut_sw(G)

	Apply the Stoer-Wagner graph cut

Use the Stoer-Wagner algorithm for cutting the graph.


	Parameters

	G (networkx.Graph) – The graph that needs to be cut



	Returns

	
	G1 (networkx.Graph) – One of the subgraphs


	G2 (networkx.Graph) – The other subgraph

















smartsvm.divergence module

Functions for computing the Henze-Penrose divergence

This module contains functions for computing the Henze-Penrose divergence
between data from two classes (divergence()) or between one class and
the collection of all other classes (ovr_divergence()).


	
smartsvm.divergence.divergence(X1, X2, nTrees=3, bias_correction=True)

	Compute the Henze-Penrose divergence

Compute the Henze-Penrose divergence between data from two classes using
the Friedman-Rafsky statistic. This is based on the Euclidean minimal
spanning tree between two classes. To reduce variance in the estimate, a
number of orthogonal MSTs are used that can be set with a function
parameter. A bias correction to the divergence is applied, unless this is
disabled by the user (if disabled, the estimate is still corrected to
ensure non-negativity).


	Parameters

	
	X1 (numpy.ndarray) – Data matrix for one of the classes


	X2 (numpy.ndarray) – Data matrix for the other class


	nTrees (int) – Number of orthogonal minimal spanning trees to use


	bias_correction (bool) – Whether or not to apply bias correction to the estimator






	Returns

	divergence – The Henze-Penrose divergence between the classes



	Return type

	float










	
smartsvm.divergence.merge_and_label(X1, X2)

	Merge two datasets

Merge the datasets into one array and create a vector of labels to preserve
class membership.


	Parameters

	
	X1 (numpy.ndarray) – Data matrix for one of the classes


	X2 (numpy.ndarray) – Data matrix for the other class






	Returns

	
	data (numpy.ndarray) – Data matrix which vertically stacks X1 and X2


	labels (numpy.ndarray) – Labels vector of -1 and 1 for X1 and X2 data respectively















	
smartsvm.divergence.ovr_divergence(X, labels, nTrees=3, bias_correction=True)

	Compute the One-vs-Rest Henze-Penrose Divergence for all classes

This function is similar to divergence() with the difference that it
computes the One-vs-Rest divergence. This is the divergence between one
class and the collection of all the other classes together. This divergence
is computed for each class simultaneously.


	Parameters

	
	X (numpy.ndarray) – Data matrix


	labels (numpy.ndarray) – Class labels for the instances


	nTrees (int) – The number of orthogonal MSTs to construct


	bias_correction (bool) – Whether or not to apply bias correction






	Returns

	ovr_divergence – Dictionary with a mapping from the class label to the OvR divergence estimate



	Return type

	dict












smartsvm.error_estimate module

Functions for computing the Henze-Penrose estimate of the Bayes Error Rate

This module contains functions for computing the Henze-Penrose estimate of the
Bayes Error Rate (BER).


	
smartsvm.error_estimate.compute_error_graph(X, y, n_jobs=1, normalize=True)

	Compute the complete weighted graph of pairwise BER estimates

Computes the estimate of the BER for each pair of classes and returns this
in a complete weighted graph. If desired, computing the error can be done
in parallel.


	Parameters

	
	X (numpy.ndarray) – Numpy array of the data matrix


	y (numpy.ndarray) – Numpy array with the class labels


	n_jobs (int) – Number of parallel jobs to use


	normalize (bool) – Whether or not to use normalized BER estimation






	Returns

	G – Weighted complete graph where the class labels are the nodes and the
edge weights are given by the BER estimate



	Return type

	networkx.Graph










	
smartsvm.error_estimate.compute_ovr_error(X, y, normalize=True)

	Compute OvR-BER for each class

The One-vs-Rest Bayes error rate is the error rate for a single class
compared to all other classes combined. This function computes this error
rate for each class in the dataset, using the
divergence.ovr_divergence() function. By default the OvR-BER is
normalized with the estimates of the class prior probabilities.


	Parameters

	
	X (numpy.ndarray) – The data matrix


	y (numpy.ndarray) – A vector of class labels


	normalize (bool) – Whether or not to normalize the OvR-BER






	Returns

	estimates – Dictionary with a mapping from the class label to a float representing
the OvR-BER estimate.



	Return type

	dict










	
smartsvm.error_estimate.hp_binary(X, y, normalize=True)

	Henze-Penrose estimation of the BER for a binary dataset

This is a wrapper around the hp_estimate() function for binary
datasets.


	Parameters

	
	X (numpy.ndarray) – Data matrix


	y (numpy.ndarray) – Label array consisting of two distinct labels


	normalize (bool) – Whether or not to normalize the error using empirical estimates of
prior probabilities






	Returns

	estimate – The Henze-Penrose estimate of the Bayes error rate



	Return type

	float










	
smartsvm.error_estimate.hp_estimate(X1, X2, normalize=True)

	Henze-Penrose estimation of the Bayes Error Rate

Estimate the (normalized) Bayes error rate using the Henze-Penrose
estimator. The estimate is formed by averaging the upper and lower bounds
on the Bayes error. By default, the estimate is normalized with the
empirical estimates of the class prior probability.


	Parameters

	
	X1 (numpy.ndarray) – Data matrix for one class


	X2 (numpy.ndarray) – Data matrix for the other class


	normalize (bool) – Whether or not to normalize the error using empirical estimates of
prior probabilities






	Returns

	estimate – The Henze-Penrose estimate of the Bayes error rate



	Return type

	float












smartsvm.smartsvm module


	
class smartsvm.smartsvm.SmartSVM(binary_clf=<class 'sklearn.svm.classes.LinearSVC'>, clf_params=None, n_jobs=1, graph=None, cut_algorithm='stoer_wagner', normalize_error=True)

	Bases: smartsvm.base.HierarchicalClassifier

SmartSVM classifier for multiclass classification

This is the SmartSVM classifier. This classifier splits the classes into a
hierarchy based on the weighted complete graph of pairwise estimates of the
Bayes Error Rate between classes.

Note that this class is used in a binary tree. It therefore has children
which are also elements of the SmartSVM class.

This class inherits from the HierarchicalClassifier class, more
documentation on the basic methods of the class can be found there.


	Parameters

	
	binary_clf (classifier) – The type of the binary classifier to be used for each binary
subproblem. This will typically be a scikit-learn classifier such as
LinearSVC, DecisionTreeClassifier, etc.


	clf_params (dict) – Parameters to pass on to the constructor of the binary_clf type
classifier. It must be a dict with a mapping from parameter to value.


	n_jobs (int) – Number of parallel jobs to use where applicable.


	graph (networkx.Graph) – Complete weighted graph with the pairwise Bayes error estimates. If it
is not supplied, it will be computed when the fit() method is
called.  This parameter exists for situations when the graph is
precomputed.


	cut_algorithm (str) – The algorithm to use for the graph cut. Several algorithms are
currently implemented, see cut.graph_cut() for more details.


	normalize_error (bool) – Whether or not to normalize the Bayes error estimates with the
empirical estimate of the prior probability.









	
elements

	The labels of this node in the hierarchy






	
fit(X, y)

	Fit the SmartSVM classifier

This method fits the SmartSVM classifier on the given data. If the
graph attribute of the class is not defined, it will be computed
with error_estimate.compute_error_graph(). If this node in the
hierarchy can not be split further, no classifier will be fit.
Otherwise, the node will be split to form a binary classification
problem. Next, the binary classifier will be trained on this problem.
Finally, the left and right children of the classifier will be trained
as a recursive step.

Important: This method constructs the graph attribute of the
class if it does not exist yet. However, if the graph does exist, it is
not recomputed. This means that a problem can occur if you construct an
instance of the SmartSVM classifier, fit it, then fit it
again with different data. Namely, the graph for the first data may not
be appropriate for the second dataset. The solution is however simple:
when fitting with a different dataset, reset the graph using
clf.graph = None.


	Parameters

	
	X (numpy.ndarray, accept csr sparse) – Training data, feature matrix


	y (numpy.ndarray) – Training data, label vector






	Returns

	self – Returns self.



	Return type

	object
















smartsvm.utils module

Useful numerical utilities.


	
smartsvm.utils.indices_from_classes(classes, y)

	Create index vector for all labels in classes

Create an index vector with the same dimensions as the vector y, with
indices equal to True if the label is in the list of classes.


	Parameters

	
	classes (list or numpy array) – Classes to check membership of


	y (numpy.ndarray) – Label vector






	Returns

	indices – Boolean vector with True for the elements of y which occur in
classes and False otherwise.



	Return type

	numpy.ndarray (bool)
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